Multi-Scale Fully Convolutional Network for Fast Face Detection

نویسندگان

  • Yancheng Bai
  • Wenjing Ma
  • Yucheng Li
  • Liangliang Cao
  • Wen Guo
  • Luwei Yang
چکیده

Image pyramid is a common strategy in detecting objects with different scales in an image. The computation of features at every scale of a finely-sampled image pyramid is the computational bottleneck of many modern face detectors. To deal with this problem, we propose a multi-scale fully convolutional network framework for face detection. In our detector, face models at different scales are trained end-to-end and they share the same convolutional feature maps. During testing, only images at octave-spaced scale intervals need to be processed by our detector. And faces of different scales between two consecutive octaves can be detected by multi-scale models in our system. This makes our detector very efficient and can run about 100 FPS on a GPU for VGA images. Meanwhile, our detector shows superior performance over most of state-of-the-art ones on three challenging benchmarks, including FDDB, AFW, and PASCAL faces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Face Detection Method via Convolutional Neural Network

Current face or object detection methods via convolutional neural network (such as OverFeat, R-CNN and DenseNet) explicitly extract multi-scale features based on an image pyramid. However, such a strategy increases the computational burden for face detection. In this paper, we propose a fast face detection method based on discriminative complete features (DCFs) extracted by an elaborately desig...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

Detecting Faces Using Region-based Fully Convolutional Networks

Face detection has achieved great success using the region-based methods. In this report, we propose a region-based face detector applying deep networks in a fully convolutional fashion, named Face R-FCN. Based on Region-based Fully Convolutional Networks (R-FCN), our face detector is more accurate and computationally efficient compared with the previous R-CNN based face detectors. In our appro...

متن کامل

Multi-Branch Fully Convolutional Network for Face Detection

Face detection is a fundamental problem in computer vision. It is still a challenging task in unconstrained conditions due to significant variations in scale, pose, expressions, and occlusion. In this paper, we propose a multi-branch fully convolutional network (MB-FCN) for face detection, which considers both efficiency and effectiveness in the design process. Our MB-FCN detector can deal with...

متن کامل

Multi-path Region-Based Convolutional Neural Network for Accurate Detection of Unconstrained "Hard Faces"

Large-scale variations still pose a challenge in unconstrained face detection. To the best of our knowledge, no current face detection algorithm can detect a face as large as 800 × 800 pixels while simultaneously detecting another one as small as 8 × 8 pixels within a single image with equally high accuracy. We propose a two-stage cascaded face detection framework, Multi-Path Region-based Convo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016